

IPv6 の概要

1. はじめに

世界的なインターネットの普及に 伴い、IPv4のグローバルアドレス の枯渇が予測されております。この 様な中、IPv4の後継として設計さ れたIPv6への期待が高まりだして います。また、端末系においても IPv6が標準的に装備されだしてお り、今後さらなるIPv6の活用も予 測されています。今回は、IPv6の 概要、特長およびIPv4とIPv6の併 用方法について紹介します。

2. IPv4の課題

IPv4の最大の課題として、「IPア ドレス数が少ない」ことが上げられま す。IPv4は、IPアドレス数として約 43億個のIPアドレスを付与可能では あるが、世界人口60億人に対して、 1人1個のIPアドレスを付与するこ とができない状況となっています。

また、IPv4を設計した当初は、 現在の様な大規模で多様な用途での 使用を想定していませんでした。こ のため、セキュリティなどの新たな 機能を既存機能に追加する必要があ り、サービスの複雑化を招いている 課題があります。

3. IPv6の概要

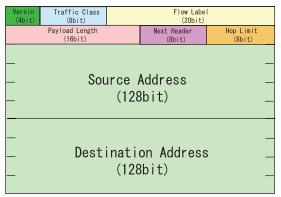
IPv6は、IPv4の課題であるアド レス空間が少ないことを解決させ、 様々な分野の機器にIPアドレスを付 与可能とする技術であります。これ により、END-ENDのグローバル 通信を実現し、新しいIPサービスを 生み出すことが可能になります。以 下にIPv6の概要を示します。

(1) IPアドレスエリア拡張

IPヘッダ内のIPアドレスエリア が、IPv4では32bitからIPv6では 128bitに拡張され、IPアドレス付与 数を大幅に増加させています。

(2) 付与可能IPアドレス数の増加

IPv6の付与可能なIPアドレス数 は、全世界の家電製品を含む装置に 対して付与が可能です。


IPv4アドレス数:43億個 IPv6アドレス数:340澗個(43億 の4乗個)

(3) IPアドレス表現の変更

IPv4では10進数で表記していた IPアドレスが、IPv6では16進数で 表記します。

(表記方法)

・x:x:x:x:x:x:x:x(xは16bitの16進数で

- •Version (4bit)
- インターネットプロトコルバージョンを表す。IPv6 では "6"
- •Traffic Class(8bit)
- 中継ルータなどでのIPv6パケットの優先度を表す。
- •Flow Label(20bit)
 - 特定の連続パケット(データストリーム等)を識別し特別な処理をする ために利用可
- •Payload Length (16bit)
- IPv6ペイロードの長さ(該当IPv6ヘッダに続くパケットの残りの
- オクテット数。拡張ヘッダがある場合は、そのサイズを含む)
- Next Header (8bit)
- IPv6へッダに続くヘッダの種類の識別子。IPv4のプロトコルフィールド と同じ値を使用
- •Hop Limit (8bit)
- ホップ数の制限
- •Source Address(128bit)
- 送信元アドレス
- •Destination Address(128bit) 送信先アドレス

IPv6ヘッダ構成

表記)

- ・頭のゼロは省略可能。
- ・ゼロの連続は省略可能。
- ・ゼロが連続する箇所は、1つのア ドレスで1箇所だけ[::]で表記す ることが可能。
- ・64bitのネットワークアドレスと 64bitのホストアドレスに分離。

【IPアドレス表記例】

2022:0000:530E:0000:0000:090C:567F:201B ⇒ 2022:0:530E::90C:567F:201B

(4) IPアドレスタイプの追加変更

IPv6では、ユニキャスト、マル チキャスト、エニーキャストの3種 類のアドレスタイプを使用します。

①ユニキャスト

グローバルユニキャストアドレス ⇒従来のIPv4と同様 リンクローカルユニキャストアド レス⇒LAN内だけで使用

②マルチキャスト

IPv4ではオプションであったマ ルチキャストが、IPv6で標準実装 となりました。

③エニーキャスト

IPv6で規定された新しいアドレ スタイプです。一つのアドレスを複 数の装置が共有して使用し、送信元 から最も近い装置にパケットが送信 されます。DNSサーバなどの分散 配置に使用されます。

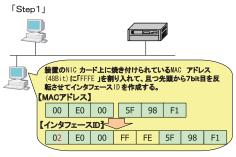
4. IPv6の特長

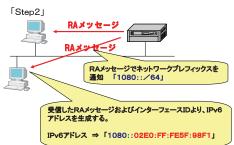
IPv6では、新しい機能が追加さ れています。その中でも代表的な機 能を以下に示します。

(1) IPアドレスの生成

IPv6のIPアドレス生成方法とし て、「IPアドレス手動設定」「RS/RA によるIPアドレス自動生成」「DHCP によるIPアドレス自動生成」があり ます。

①IPアドレス手動設定(IPv4と同


IPアドレスを個々に手動で設定す る方式です。覚えやすいアドレスを 割り振ることができ、NICカードの 交換が発生してもIPアドレスが変更 されないメリットがあります。


②RS/RAによるIPアドレス自動生 成(新機能)

RAメッセージから、端末自身が IPアドレスを自動生成する方式で す。端末がRAメッセージを待たず にRSメッセージを送信してRAメッ セージを要求する場合もあります。

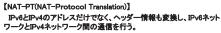
(RS: Router Solicitation

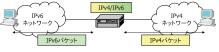
RA: Router Advertisement)

③DHCPによるIPアドレス自動生成 (IPv4と同様)

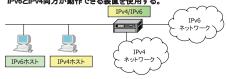
端末のIPアドレス割当てを管理す るサーバが端末にIPアドレスを割当 てる方式です。

(2) IPsecの標準実装


豊富なグローバルアドレスによ り、IPv4では困難であった端末間 のIPsecを標準装備しています。こ れは、モバイル装置間の通信も想定 しているためです。



端末~端末間のセキュリティ確保が飛躍的に向上


5. IPv4とIPv6の併用方法

IPv6を導入するためには、既存 のIPv4網との併用が必須になりま す。このため、IPv4からIPv6への 移行は同時に実行する必要はありま せんが、IPv4およびIPv6の両方が 動作するデュアルスタック装置が必 要となります。以下に代表的なIPv 4とIPv6の併用方法を示します。



【デュアルスタック】 IPv6とIPv4両方が動作できる装置を使用する。

【トンネリング】 IPv4内部にIPv6をカプセル化して通信する。

6. 最後に

今後、IPv6化対応製品の汎用化 がさらに進むことが予想されます。 IPv6への移行は、ネットワーク装 置のみならずアプリケーションも含 めシステム全体を考慮する必要があ ります。このため、大規模ネットワ ークにおいは、事前に試験環境を構 築し、事前検証を十分実施する必要 があると考えます。